Automatic Analysis of AUV Log Data for Expert System Generation

Status: completed
Supervisor: Horst Hellbrück , Torsten Teubler
Student: Heng Qian

Topic

Expert systems are a well known technique in Artificial Intelligence (AI) as they provide means to establish the experiential knowledge of human experts in a computer system. Expert systems are widely used in medicine mainly for diagnosis tasks. In robotics expert systems are also used to control autonomous robots.

Details

In this work an expert system for online diagnosis and failure detection for an Autonomous Underwater Vehicle (AUV) has to be developed using the CLIPS expert system tool. The usual approach to establish the knowledge in the expert system is to ask human experts. In the approach which has to be developed in this thesis the knowledge is taken from log files recorded during supervised operation mode of the AUV. Therefore, the log data is considered to represent the normal operation mode. This log data has to be examined for correlations. An example is a correlation between the depth control the pressure sensor. If the AUV dives the pressure increases in normal operation. If this is not the case either the pressure sensor or the diving mechanism does not work. These correlations have to be implemented in the expert system by first analyzing the log data and finding correlations. In a second step a code generator has to be written which generates expert system code which identifies deviations for the normal operation mode based on the correlations found in the first step. There is already some existing work (e.g. Failure Detection in an Autonomous Underwater Vehicle) in the field but unlike our approach correlations are found manually and the expert system is automatically generated.

Tasks

  • Implement a technique to find correlations in the AUV log data automatically
  • Visualize the found correlations and check for soundness manually
  • Implementing a code generator for an expert system for identifying deviations form the normal operation mode
  • Evaluation of the generated expert system with log data and modified test data

Requirements

  • Good programming skills in C/C++, Java, Python, etc.
  • Willingness to incorporate in AI, expert systems, and signal processing
  • Willingness to incorporate in other software tools like CLIPS

Abschlussarbeiten aus dem Bereich Privacy und Security

Die genaue Aufgabenstellung bzw. der Schwerpunkt kann individuell abgestimmt werden. Bei Interesse wenden Sie sich bitte an Dorina Gumm (dorina.gumm@th-luebeck.de).

Gamedesign for Security and Privacy (GSP)

Spielerisch lernen: Wie funktioniert Cross-Site-Scripting? Wie kann ein Identitätsdiebstahl erfolgen? Wie können Plattformzugänge gesichert werden? Warum sollte man Kommunikation verschlüsseln? Entwickeln Sie Spiele, mit denen Sie die Spieler an Themen aus dem Bereich Sicherheit, Selbstschutz und Privacy heranführen.

In dem GSP-Projekt geht es um die Frage, wie o.g. Themen mittels Gamification erlebbar und damit einem breiteren Adressatenkreis zugänglich gemacht werden können. Ziel ist es, die Awareness für diese Themen in der Gesellschaft als auch in Unternehmen zu fördern (Digitale Mündigkeit). Wenn Sie daran Interesse haben, können Sie sich diesen Themen im Rahmen von Design- und Praxisprojekten sowie Abschlussarbeiten widmen.

Datenschutz, Datenhandel und Datenanalyse (D3)

Datenschutz und Usability: Datenschutz wird öffentlich häufig als Innovationshemmer dargestellt, der Funktionsumfang und Usability von Anwendungen beeinträchtigt. Ist dem wirklich so? Wie können Anwendungen datenschutz- und benutzungsfreundlich entwickelt werden? Welche Mechanismen zur Anonymisierung/Pseudonymisierung gibt es und wie können sie im Design-Prozess berücksichtigt werden?

Mit Daten den Fachbereich gestalten: Mit öffentlichen Daten können hilfreiche Tools für den Alltag, spezielle Aufgaben oder das Gemeinwohl entwickelt werden (z.B. ÖPNV-Fahrpläne, Wetterdaten für Wassersportgebiete, Feinstaubmessungen). Mit welcher Art Daten könnte die Lehre und der Alltag am Fachbereich verbessert werden? Wie könnten diese in Web-Anwendungen genutzt und aufbereitet werden? Welche gesellschaftlichen Fragen sind damit verbunden?

Lernprozesse mit Daten unterstützen: Unter den Schlagworten Learning Analytics und Educational Datamining werden derzeit Ansätze diskutiert, wie Lernende automatisiert beim Lernen unterstützt werden können. Dazu werden viele persönliche Daten erhoben, aus denen der Lernstand und Lernbedarfe analysiert werden sollen. Hieraus ergeben sich Fragen bezüglich des Datenschutzes, der Verlässlichkeit der Ergebnisse als auch bzgl. gesellschaftlicher Fragestellungen (z.B. der Rolle von Lehrenden, Anforderungen an Lernende, Stellenwert von Bildungsmaßnahmen u.ä.).